Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available August 1, 2026
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            Free, publicly-accessible full text available June 3, 2026
- 
            To fully capitalize on the unique properties of 2D materials, cost-effective techniques for producing high-quality 2D flakes at scale are crucial. In this work, we show that dry ball-milling, a commonly used powder-processing technique, can be effectively and efficiently upgraded into an automated exfoliation technique. It is done by adding polymer as adhesives into a ball mill to mimic the well-known tape exfoliation process, which is known to produce 2D flakes with the highest quality but is limited by its extremely low efficiency on large-scale production. Seventeen types of commonly seen polymers, including both artificial and natural ones, have been examined as additives to dry ball-mill hexagonal boron nitride. A parallel comparison between different additives identifies low-cost natural polymers such as starch as promising dry ball-mill additives to produce ultrathin flakes with the largest aspect ratio. The mechanical, thermal, and surface properties of the polymers are proposed as key features that simultaneously determine the exfoliation efficiency, and their ranking of importance in the mechanical exfoliation process is revealed using a machine learning model. Finally, the potential of the polymer-assisted ball-mill exfoliation method as a universal way to produce ultra-thin 2D nanosheets is also demonstrated.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Free, publicly-accessible full text available April 15, 2026
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            Goodkin, Nathalie (Ed.)Abstract Most oceanic lead (Pb) is from anthropogenic emissions into the atmosphere deposited into surface waters, mostly during the past two centuries. The space‐ and time‐dependent emission patterns of anthropogenic Pb (and its isotope ratios) constitute a global geochemical experiment providing information on advective, mixing, chemical, and particle flux processes redistributing Pb within the ocean. Pb shares aspects of its behavior with other elements, for example, atmospheric input, dust solubilization, biological uptake, and reversible exchange between dissolved and adsorbed Pb on sinking particles. The evolving distributions allow us to see signals hidden in steady‐state tracer distributions. The global anthropogenic Pb emission experiment serves as a tool to understand oceanic trace element dynamics. We obtained a high‐resolution (5° station spacing) depth transect of dissolved Pb concentrations and Pb isotopes from Alaska (55°N) to just north of Tahiti (20°S) near 152°W longitude. The sections reveal distinct sources of Pb (American, Australian, and Chinese), transport of Australian style Pb to the water mass formation region of Sub‐Antarctic Mode Water which is advected northward, columnar Pb isotope contours due to reversible particle exchange on sinking particles from high‐productivity particle veils, and a gradient of high northern deep water [Pb] to low southern deep water [Pb] that is created by reversible exchange release of Pb from sinking particles carrying predominantly northern hemisphere Pb.208Pb/206Pb versus206Pb/207Pb isotope relationships show that most oceanic Pb in the North Pacific is from Chinese and American sources, whereas Pb in the South Pacific is from Australian and American sources.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Abstract Salmonella entericais a pathogenic bacterium known for causing severe typhoid fever in humans, making it important to study due to its potential health risks and significant impact on public health. This study provides evolutionary classification of proteins fromSalmonella entericapangenome. We classified 17,238 domains from 13,147 proteins from 79,758Salmonella entericastrains and studied in detail domains of 272 proteins from 14 characterizedSalmonellapathogenicity islands (SPIs). Among SPIs-related proteins, 90 proteins function in the secretion machinery. 41% domains of SPI proteins have no previous sequence annotation. By comparing clinical and environmental isolates, we identified 3682 proteins that are overrepresented in clinical group that we consider as potentially pathogenic. Among domains of potentially pathogenic proteins only 50% domains were annotated by sequence methods previously. Moreover, 36% (1330 out of 3682) of potentially pathogenic proteins cannot be classified into Evolutionary Classification of Protein Domains database (ECOD). Among classified domains of potentially pathogenic proteins the most populated homology groups include helix-turn-helix (HTH), Immunoglobulin-related, and P-loop domains-related. Functional analysis revealed overrepresentation of these protein in biological processes related to viral entry into host cell, antibiotic biosynthesis, DNA metabolism and conformation change, and underrepresentation in translational processes. Analysis of the potentially pathogenic proteins indicates that they form 119 clusters or novel potential pathogenicity islands (NPPIs) within theSalmonellagenome, suggesting their potential contribution to the bacterium’s virulence. One of the NPPIs revealed significant overrepresentation of potentially pathogenic proteins. Overall, our analysis revealed that identified potentially pathogenic proteins are poorly studied.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Provost, Joseph; Cornely, Kathleen; Parente, Amy; Peterson, Celeste; Springer, Amy (Ed.)This review discusses the intriguing yet controversial concept of metabolons, focusing on the malate dehydrogenase-citrate synthase (MDH-CISY) metabolon as a model. Metabolons are multienzyme complexes composed of enzymes that catalyze sequential reactions in metabolic pathways. Metabolons have been proposed to enhance metabolic pathway efficiency by facilitating substrate channeling. However, there is skepticism about the presence of metabolons and their functionality in physiological conditions in vivo. We address the skepticism by reviewing compelling evidence supporting the existence of the MDH-CISY metabolon and highlighting its potential functions in cellular metabolism. The electrostatic interaction between MDH and CISY and the intermediate oxaloacetate, channeled within the metabolon, has been demonstrated using various experimental techniques, including protein–protein interaction assays, isotope dilution studies, and enzyme coupling assays. Regardless of the wealth of in vitro evidence, further validation is required to elucidate the functionality of MDH-CISY metabolons in living systems using advanced structural and spatial analysis techniques.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
